晶体学

晶体学
晶体学:是关于晶体的科学。主要研究晶体的对称性、晶体结构以及晶体生长过程和晶体的物理性能。

正文

关于晶体(或广而言之,晶态物质)的科学。主要研究晶体的对称性、晶体结构(包括测定晶体结构的方法)以及晶体生长过程和晶体的物理性能。晶体学具有明确的研究对象和卓具特色的研究方法。由于晶体类型繁多,分布又极其广泛,晶体学已延伸到物理学、化学生物学、矿物学和冶金学等不同学科之中,而成了材料科学的必要基础。
自古以来,人类就对美丽晶莹的晶体发生了浓厚兴趣。到17、18世纪,晶体学开始以一门独立学科的面目出现。发展最早的部分是几何晶体学,从矿物晶体外形的规律性出发,逐步深入探讨周期性结构的对称性。19世纪末E.C.费奥多罗夫与A.M.熊夫利导出了 230种空间群,从而全面奠定了几何晶体学理论基础。直到1912年M.von劳厄等发现了X 射线在晶体中的衍射现象以后,这些理论才得到全面证实和广泛应用。到20世纪中叶Α.Β.舒布尼科夫等引入色对称性的概念,对空间群理论作了重要的推广,可用于诠释磁结构的对称性。
晶体X射线衍射的发现引起了晶体学的重大变革,开创了晶体微观结构研究的新纪元。布喇格父子对于 X射线结构分析的发展作出了重大贡献;随后电子衍射和中子衍射也被用来作结构分析的手段,并辅以多种能谱方法,使晶体结构分析方法有了很大改进。从简单的NaCl、KCl到结构极其复杂的蛋白质,数以万计的晶体结构业已探明,提供了发展晶体化学这一学科的丰富资料。经典的结构分析在于从衍射图样来推求晶胞中的电子密度分布,从而定出各原子的位置。这样定出来的是对时空取平均值的静态结构,通称为理想结构。但晶体的实际结构具有更为丰富的内容。首先,实际晶体不可能是绝对完整的,晶体内存在有各种类型的缺陷(见晶体缺陷),如位错、点缺陷和面缺陷等。从50年代开始发展了多种直接观察晶体缺陷的技术,已进行了大量的工作。特别是近年来发展的高分辨率电子显微术可以直接观察晶体结构,并且能辨识出视野中各局域的结构差异,成为研究晶体实际结构的重要手段(见点阵像)。其次,晶体表面几个原子层中的结构和大块样品内部结构有差异。低能电子衍射等技术的发展提供了探测表面结构的方法,并已开辟了表面晶体学这一新领域。晶体中的原子并非静止不动,而是不断地作热振动,热中子非弹性散射和光的散射、光的吸收等技术已用来探测点阵振动的模式,追踪结构相变中这些模式的变化,为开拓动态晶体学作出了贡献(见点阵动力学的实验研究方法)。