爱尔兰根纲领(Erlanger Programme) 是菲利克斯·克莱因于1872年发表一个深具影响的研究纲领,题为Vergleichende Betrachtungen über neuere geometrische Forschungen(新几何研究上比较的观点),由于克莱因那个时候在爱尔兰根 而得名。该纲领建议了对于那个时候的几何问题的一种新的解决办法。 基本概况
有一个'几何'还是很多个?自欧几里德以来,几何意味着二维(平面几何)或者三维(立体几何)欧氏空间的几何。在19世纪上半叶,有了一些发展使得这个景象变得复杂了。数学应用要求有四维或者更高维的几何;对传统欧氏几何的基础的审视已经揭示出平行公理和其他公理的独立性,而且非欧几何已经诞生;而在射影几何中,新的'点'(无穷远点,有复数坐标的点)已经被引入。 用抽象术语来说,这个解决办法是使用对称性作为根本的原则,并且从一开始就陈述不同的几何可以共存,因为它们处理不同类型的命题和不同类型的对称性和变换下的不变量。仿射几何和射影几何的区别就在于诸如平行这种仿射不变量的概念是前者的恰当主题,而对后者来说却不是主要概念。然后,通过从各个几何中抽象出基础的对称群,它们之间的关系可以在群的级别重新建立。因为仿射几何的群是射影几何的群的子群,所有射影几何的概念不变量先验的在仿射几何中有意义;但是反过来不行。如果你包含更多对称性进来,你就有一个更强的理论,但更少的概念和定理(但会更深刻和一般化)。 齐性空间